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This paper considers weighted G2

-degree reduction of Bézier curves.

Given Bézier curves, degree reduction is an approximative process used to
write it as Bézier curves of lower degree. A weight function w [t] = 2t (1-t), t
€ [0, 1] is used in degree reducing the Bézier curves with G? -continuity at
the end points of the curve using the L,-norm. The boundary conditions
reduce the error near the boundaries and it is anticipated that the weight
function improves approximation in the middle of the curve. This is fulfilled
by the numerical results and comparisons which show that the proposed
method produces smaller error and outperforms existing methods.

© 2016 IASE Publisher. All rights reserved.

1. Introduction

The Bézier curves possess very interesting
algebraic and geometric properties, and thus, they
play a fundamental role in designing and generating
curves in a computer-oriented approach. These
include algorithmic approach to draw curves,
simplicity in evaluation and programming. They
become the fundamental basis in any CAD software;
see (Hollig and Horner, 2013; Prautzsch et al,, 2013).
Data have to be compared, compressed, exchanged,
and transferred between different CAD systems.
Since different CAD systems use different degrees to
represent Bézier curves, thus degree reduction has
to be carried out. This issue has been investigated by
many researchers. In degree reduction, in addition to
the satisfaction of some conditions at the
boundaries, the Bézier curve of degree n is to be
approximated by a Bézier curve of degree m, m < n.
The methods we have require finding the solution of
non-linear system of equations. This suggests using
numerical methods. (Lutterkort et al., 1999) proved
that degree reduction of Bézier curves in the L, norm
equals best Euclidean approximation of Bézier
points, see also (Peters and Reif, 2000). These results
are generalized to the constrained case by (Ahn et
al, 2004), and the discrete cases have been studied
in (Ait-Haddou, 2015). Rababah et al. (2007) used
the idea of basis transformation between Jacobi and
Bernstein to ascertain multi-degree reduction of
Bézier curves. L-2 degree reduction of triangular
Bézier surfaces with common tangent planes at
vertices is considered in (Rababah, 2005). To find G2-
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continuity conditions, we are supposed to solve
nonlinear equations. The conjugate gradient method
has to be utilized to solve the minimization problem.
Therein, challenging difficulties are encountered;
search directions lose conjugate requiring the search
direction to be reset to the steepest descent
direction if progress alters or stops.

The existing methods to find degree reduction
have many issues including: accumulate round-off
errors, stability issues, complexity, accuracy, losing
conjugacy, requiring the search direction to be set to
the steepest descent direction frequently,
experiencing ill-conditioned systems, leading to a
singularity, and the most challenging difficulty is in
applying the methods (difficulty and indirect).
(Rababah and Mann, 2013) presented a method to
find the G2-degree reduction and linear G!-, G2-, and
G3-multiple degree reduction methods for Bézier
Curves. These results are expressive to researchers
as well as to industrial practitioners. Their examples
show that the C2 method fails to reproduce the inner
loop of the heart, while their C;/G, method
reproduces the loop and provides a better
approximation elsewhere along the curve. The G2-
degree reduction is also studied by (Lu and Wang,
2006) and the weighted G!-multi-degree in (Rababah
and Ibrahim, 2016). Wozny and Lewanowicz (2009)
studied multi-degree reduction of Bézier curves with
constraints using dual Bernstein basis.

In all existing degree reducing methods, the
conditions and free parameters were applied at the
end points. So, there is a need to better approximate
those parts close to the Centre of the curve. In this
paper, we introduce a weight to take care of the
Centre of the curve, it is appropriate to consider
degree reduction with the weight function w[t] = 2t
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(1-t),t €]0, 1]. The examples show that the
proposed methods provide better approximation at
the centre of the curves with minimum error and
also reproduced these loops correctly better than
existing methods.

2. Preliminaries

A Bézier curve B,(t) of degree n is defined
algebraically as follows:
n

PO =) mBI©®),  0<t
i=0
<1, €]
where

BI(t) = (:l) (A—o™it, i=01,..,n,

are the Bernstein polynomials of degree n, and P,
Py, .. P, are called the Bézier control points or the
Bézier points, for more see (Hollig and Horner, 2013;
Prautzsch et al,, 2013).

The operator A is defined as follows:
Ap; = p;, Api= NTpy — Mpy, ke

>1, i=o1..,n—k

The first derivative of the Bézier curve is given

by:

n-1

d

2P0 = nZO 8p; B (0.
i=

Using the above definition of A, the k-th
derivatives of the Bézier curve are obtained by
repeating the previous process k times to get:

-k
dk n N
—P,(t =—ZA"  BE().
dtk Tl() (n_k)! . pl 1A ()
i=

A formula for the multiplication of the weight
function w (t) = 2t (1-f) with two Bernstein

polynomials is given by:
2D

m+n+2
( i+j+1 )
The integral of this defines the Gram matrix
Gy as (m+1) X (n+1)-matrix with weight function
as follows:
9ij =

[) BMOBFO)2¢6(1 — t)dt =

B"(©)B'(t)2t(1 — t) = B,

2()(H)

m+n+2)’
(m+n+3)( i1 )

0,...,m, j=0,..,n (2)

It is clear that the matrix G, with weight
function is real and symmetric. We use mathematical
induction to show it is positive definite: Since the
entire upper left sub matrices have positive
determinants, thus, the matrix G, ., is a symmetric
positive definite matrix, see the case in (Rababah and
Mann, 2013).

3. Geometric continuity

The Bézier curves P, and R,, are G*-continuous at
t=0,1, see (Rababah and Mann, 2013), if there exists
a strictly increasing parameterization s(t):[0,1] -
[0,1] with s(0) =0, s(1) =1, and

14

R0 =PP(s®), i=0,1, j=01..k (3)

4. Degree reduction of Bézier curves

We want to find a Bézier curve R, (t) of degree m
with control points {r;}/%, that approximates P, (t)
and satisfy the following two conditions:

(1) P, and R,, are G2-continuous at the end
points.

(2) The weighted L;-error between B, and R,, is
minimum.

We can write the two Bézier curves P,(t) and
R, (t) in matrix form as

n

P(®) = D piBI(O) =B P, and R(®)

i=0
n

- Zri BM(t) =:B,R, 0<t

i=0
<1, 4

In the following sections we investigate weighted

degree reduction of Bézier curve with G2-continuity

at the boundaries.
5. Weighted G?-Degree Reduction
P,(t) and R,,(t) are G2-continuous att = 0, 1 if the

two curves B, and R, satisfy the following
conditions:

R,() =P,(s®), i=01 (5)

R,() = s'@Pi(s@®), s'@O>0 i=01 (6)

Ry (D) = (s' D) P (s) +

s" (DR (s@), s'()>0, i=0,1. (7)
These conditions are simplified by

substituting s'(i) =67, s"())=n; i =0,1,
s'(i) > 0, to get non-linear equations in §;; for
example the last equation becomes:
Ry (0) = 63F;'(0) + moPr(0),  Rp(1) =
§EPY (D) + 1, PU(D), 8)
To avoid the non-linearity, the authors in
(Rababah and Mann 2013) required C!-continuity by
setting §; = 1, i = 0,1 and G2-continuity. They called
this method C;/G,-multi-degree reduction. We
analogously use this substitution for the case of
weighted degree reduction. The following equations
are obtained by substitutingd, = §; =1 into
equations in (5) to (8) for the control points at either
end point of the curve to get:

To = Po» "m = Pn, (9
n n
T =po+ ;APO' Tm-1=Pn — ;Apn—p (10)
(n-1)
T, =21 — Ty + ;(;_1) A%p, + $Apono, (11)
r _ =
2, - $ 2O p2y DA (12)
Tm-1 "m m(m-1) Pn-2 m(m-1) Pn-1M1-

The pointsry, 1y, 15, Tm_2 , Tm—1, and 7, are
determined by G2-continuity conditions at the
boundary; accordingly, the elements of R, can be
decomposed into two parts stated as follows. The
boundaries part RS, = [ry, 71,72, Tm—2)Tm-1,Tm] £ and
the interior part with interior points R,’; =
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R, \RS, = [13, o) Trn—s] & Similarly, B,, is de _ _2. Mm-2f o f
— = (G"%P, — G' %°RS, — G “R:.). Ap,
decomposed in the same way into BS, and B, on, (Gmn™Fo = Gmm ™ Rim = G ™ Ron)- AP
The distance between B, and R,, is measured =0, (16)
using weighted L;-norm; therefore, the error term Where forq = 2,m — 2:
becomes G o= Gun(q;0,1,...,m), GL.
1 5 = Gpm(q;0,1,2,m—2,m—1,m),
e=  [IIBP -B R _|[“2t(1-0)dt YT = G (@3 3,y — 3). (17)
0 Note that (14) are point valued equations while

1 (15) and (16) are scalar valued equations. Expanding
- f ||B_P B°R" Bf Rf ||22t(1-t)dt. (13) (14) into its x, y, z, ... coordinates and joining them
mnomom-om-om together with (15) and (16) yields a system of d(m -

0 5) + 2 equations in d(m -5) + 2 unknowns.

Differentiating the error with respect to the For the planar curves, the control points of the

; f . -, . .
unknown ;:ontrol points R;, we get: Bézier curve are expanded into their x and y
de P components. Therefore, the variables of our system
Py 2f||BnPn — B§,Rfy — B Ry || B2t (1 — t)dt. of equations are i, k = 3, ...,m — 3,7 and n;. To
m 0 ] ] express the system in a clear form, we have to
_ Evaluating the integral and equating to zero decompose each of r, and r,,_, into a constant part
gla\;es: and a part involving 7, and 71, , respectively. Let v,
— f f
- = Grz:lnpn_G‘rf‘L,mchn_GmmRm and Vm-2 be the constant parts of r, and 1y,_,
OR;, respectively. Hence
=0, (14) vy, =21 — T+ %Azpo, (18)
where n(n-1) 15
Ghn = Gmn(3,...,m=3;0,1,..,1n), Gim Um—2 = 21 = T + oS AP (19)
= Gpm(3,..,m—3;0,1,2,m The following vectors are defined to express the
—-2,m—1,m), linear system in explicit form:
t
G,{Lm = Gmm(3,..,m—3;3,...,m—3), Bt = [p%, .p%. 1Y, 02|,
. ; - i ; ¢
and Gpp(es o) 1§ thg sub-matrix of weighted RE = [r?fc’___rrarcl_&%y’ ---'T%_g'ﬂoﬂh] )
G, formed by the indicated rows and columns. RS,
i t
Note that although we use the same notations for the _ [rg‘, v vk rE T, Toy, T1y’ vzy’ 171)1’1_2: 7}%—1: ) ] _

matrix and submatrices of G as in (Rababah and
Mann, 2013), but they do have different values and
contents.

Let @ be the direct sum and define the matrices:
+ _ _ f+
Grzryl,n - Grzr)lne9 G#i,n' GTCnTm - Grcn,m® G‘r%,m' Gm,m

Differentiating (13) with respect to n;, i =0,1, = G,{Lmea Gqu,m-
aand equating to zero gives: Since the Gram matrix G}, is real, symmetric,
5= (G2 P, — GrznﬁnRrCn _Gri',l:nRrj:l)-Apo anq posmve definite, the matrix G}, is positive
Mo definite.
=0, (15) Define:
c=[A0 O H Gmm(2,2) Gmm(2,m — 2) HApO 0 ]
0 App_lGpm(m—2,2) Gpmm—2,m—-2)[L 0 Ap,_,
Further define Ly, n, Loy, Ly as: GrmRin =GBy — GamRi (20)
. GinbPS  Ghabp) p Where .
= ) = +
™ |G AP, GRRRApY, m gre = [Gmn| g [Cmim| cr
26 A x 2¢ ALY mn L romm f romm
[ Grri,mApo Gm’,mApo ] mn Lm:m
2 —2 ) + n
Grrr':,mz‘cApr){—l Grrrrzl,mZ'CAprJ:—1 rl:l;m— {n;m
Gzif Ap% Gzif Ap”Y m(m - 1)
Lf — m,mBPo mmBPo l - Lf )t n c ’
mm —2; -2; . . _—
Gt D1 G APY_y mm) m = 1)
Further define L, ,, Lfn’n by: From (20) we can find our unknowns as:
[ G20pE G2 ,ApY ; Ry = (Ghm) M (GRGPS = GhmRS)- (21)
mn — . _ , =
, Gm ZA x Gm ZA y mn
ez Pr tea Y Pn-1 6. Examples and comparisons
[ Grri,nApo Grri,nApo ]
G‘ril;,r;tl_zAp‘rJf—l Grcr{,rr?_zAPrJ{q ’ In this section, four examples are given to
where G2 ,,G¥¢  and GI! are defined in (17). illustrate the effectiveness of the proposed method.
The matrices C, Ly,n, LS m, and Lj:n,m are obtained The examples demonstrate the great benefits of

from (15) and (16). The coordinate form of the using weighted G?*-degree reduction.

expansion of (14) becomes:

15
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Example 1: Given the Bézier curve (spiral) B,(t)
of degree 19 with the control points, see Fig. 11 in
(Rababah and Mann, 2013):

Py =(37,38), P, =(43,37), P, =(39,27), P;
= (29,26), P, =(23,36),
P; = (26,50), P; = (45,56), P, = (58,47), P

P,z = (50,75),P, = (79,67), P;; = (79,36), Pig
= (65,12), P,4 = (50, 0).

P, (t)is reduced to Bézier curve R,,(t) of
degree 8. Fig. 1 shows the curves with control
polygons; original curve (dashed-Black); weighted G2
(dashed-Red). Fig. 2 shows the error plots for

= (58,29), Py = (46,14), weighted G2-degree reduction in Example 1.
Py, = (26,6), Py =(5,15), P;; =(0,40), Py
= (3l 58)! P14 = (24’ 68)’

.05 - l;r .

04 |- I
D03 |- ' J \
D02 L | \

.01 L N N I'. \

/ ) 3 \
/ - ) .\ I| \I". e
/,. \\ . P e \ \ II \ .'.f,- \\\..
U.Z ’ U:% 0’6 013 lllJ
Fig. 1: The curves with control polygons

35t / )

30} / \

2.5

20 i

15} I,' \

- II I'.
1.0 _—|I N N
S i \'\ _.\\\ / : / f \ x'r/. \ /
L ) I .._\ / ‘/ I'-.\_ x',.' . \ I -__\.// .\\// \
0.2 0.4 0.6 0.8 1.0

Fig. 2: The error plots for weighted G2-degree reduction in Example 1

Example 2: Given the Bézier curve B, (t) of
degree 10 with the control points, see (Lu and Wang,
2006):

Py =(0,1.2) P, =(0.04,0.6) P,
= (0.15473790322581,0.507),
P; = (0.32207661290323,0.878), P,
= (0.30897177419355, 0.086),
P = (0.51864919354839,0), P
= (0.62449596774194,0.8), P,
= (0.89,0.874),
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Pg =(0.92,06), p,= (0.92,0.3), Py
= (0.75352822580645, 0).

This curve is reduced to Bézier curve R,,(t) of
degree 6. Weighted G2 degree reduction method is
used to reduce the degree of PB,(t). The original
curve (Solid-Blue) and the corresponding degree
reduced Bézier curve using G2 (Solid-Red) are
depicted in Fig. 3. The resulting error plot is depicted
in Fig. 4.
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Fig. 3: The corresponding degree reduced Bézier curve
using G2 (Solid-Red)

Fig. 4: The resulting error plot

Example 3: Given the Bézier curve B, (t) of
degree 13 with double loop control points, see
(Rababah and Mann 2013):

Py, = (4,9), P, =(23,2), P, =(49,19), Ps
= (67,20), P, = (52,48),

P; = (023), P, =(26,0), P, =(71,4), Pg
= (71,37), Py = (30,54),

P10 = (4! 25)' Pll = (24! 5)! P12 = (41' 0)' P13
=(62,1)

This double loop curve is reduced to Bézier curve
R, (t) of degree 8. The original curve (Solid-Blue)
and the corresponding degree reduced Bézier curve
using G2 (Dotted-Red) are depicted in Fig. 5.

Fig. 5: The corresponding degree reduced Bézier curve
using G2 (Dotted-Red)

Example 4: This example focuses on a “heart”
data set, given a Bézier curve B,(t) of degree 13 with
control points; see (Rababah and Mann, 2013).

P, = (22,10), P, =(37,5), P, =(86,18), P,

= (81,23), P, = (69,56),
P; = (14,26), P, = (40,3), P, =(85,7), Pg

= (85,40), Py = (44,57),
P10 = (18,29), P11 = (381 9)’ P12 = (55’ 3)! P13

= (77,5)
The heart is reduced to Bézier curve R,,(t) of
degree 8. This curve is reduced to Bézier curve
R, (t) of degree 8. The original curve (Solid-Blue)
and the corresponding degree reduced Bézier curve
using G2 (Dotted-Red) are depicted in Fig. 6.

Fig. 6: The original curve (Solid-Blue) and the corresponding degree reduced Bézier curve using G2 (Dotted-Red)

7. Conclusions

In this paper, we have presented a method of
weighted G2-degree reduction. Referring to the
examples in Figs. 1-6, the weighted G2-degree
reduction gives better results and provides less error
than existing methods, see method in (Rababah and
Mann, 2013) and the references therein.
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